Spectral Analysis and Sensitive Waveband Determination Based on Nitrogen Detection of Different Soil Types Using Near Infrared Sensors
نویسندگان
چکیده
Compared with the chemical analytical technique, the soil nitrogen acquisition method based on near infrared (NIR) sensors shows significant advantages, being rapid, nondestructive, and convenient. Providing an accurate grasp of different soil types, sensitive wavebands could enhance the nitrogen estimation efficiency to a large extent. In this paper, loess, calcium soil, black soil, and red soil were used as experimental samples. The prediction models between soil nitrogen and NIR spectral reflectance were established based on three chemometric methods, that is, partial least squares (PLS), backward interval partial least squares (BIPLS), and back propagation neural network (BPNN). In addition, the sensitive wavebands of four kinds of soils were selected by competitive adaptive reweighted sampling (CARS) and BIPLS. The predictive ability was assessed by the coefficient of determination R² and the root mean square error (RMSE). As a result, loess ( 0.93 < R p 2 < 0.95 , 0.066 g / kg < RMSE p < 0.075 g / kg ) and calcium soil ( 0.95 < R p 2 < 0.96 , 0.080 g / kg < RMSE p < 0.102 g / kg ) achieved a high prediction accuracy regardless of which algorithm was used, while black soil ( 0.79 < R p 2 < 0.86 , 0.232 g / kg < RMSE p < 0.325 g / kg ) obtained a relatively lower prediction accuracy caused by the interference of high humus content and strong absorption. The prediction accuracy of red soil ( 0.86 < R p 2 < 0.87 , 0.231 g / kg < RMSE p < 0.236 g / kg ) was similar to black soil, partly due to the high content of iron-aluminum oxide. Compared with PLS and BPNN, BIPLS performed well in removing noise and enhancing the prediction effect. In addition, the determined sensitive wavebands were 1152 nm-1162 nm and 1296 nm-1309 nm (loess), 1036 nm-1055 nm and 1129 nm-1156 nm (calcium soil), 1055 nm, 1281 nm, 1414 nm-1428 nm and 1472 nm-1493 nm (black soil), 1250 nm, 1480 nm and 1680 nm (red soil). It is of great value to investigate the differences among the NIR spectral characteristics of different soil types and determine sensitive wavebands for the more efficient and portable NIR sensors in practical application.
منابع مشابه
Research on the Effects of Drying Temperature on Nitrogen Detection of Different Soil Types by Near Infrared Sensors
Soil is a complicated system whose components and mechanisms are complex and difficult to be fully excavated and comprehended. Nitrogen is the key parameter supporting plant growth and development, and is the material basis of plant growth as well. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near infrared sensors are ...
متن کاملDetermination of Leaf Relative Water Content of Two Genotypes of Sesame Using Visible and Near- Infrared (VIS/NIR) Spectrometry to Detect Drought Stress
Relative water content (RWC) in plants is one of the most important biochemical parameters and its deficiency limits efficiency of photosynthesis and crop productivity. The scientific reports on using spectroscopy in detecting drought stress for sesame plants are very rare. In this study, the possibility of identifying water stress in two sensitive (Naz-Takshakhe) and resistant (Yekta) genotype...
متن کاملDetection of Soil Nitrogen Using Near Infrared Sensors Based on Soil Pretreatment and Algorithms
Soil nitrogen content is one of the important growth nutrient parameters of crops. It is a prerequisite for scientific fertilization to accurately grasp soil nutrient information in precision agriculture. The information about nutrients such as nitrogen in the soil can be obtained quickly by using a near-infrared sensor. The data can be analyzed in the detection process, which is nondestructive...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملResearch on the Optimum Water Content of Detecting Soil Nitrogen Using Near Infrared Sensor
Nitrogen is one of the important indexes to evaluate the physiological and biochemical properties of soil. The level of soil nitrogen content influences the nutrient levels of crops directly. The near infrared sensor can be used to detect the soil nitrogen content rapidly, nondestructively, and conveniently. In order to investigate the effect of the different soil water content on soil nitrogen...
متن کامل